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1 Introduction
Systems of coupled oscillators or individuals interacting on networks can exhibit rich
emergent behaviors such as synchronization, phase locking, and consensus or polar-
ization of opinions [1,2,3]. Such emergent behavior depends on network topology, the
governing dynamics, and the initial condition, often in a highly non-linear way. Under-
standing patterns of how such large-scale behavior emerges is of critical importance,
which has led to numerous applications in the coordination of fleets of autonomous
vehicles, information fusion, wireless sensor networks, distributed computing systems,
and modeling formation of public opinions in social networks [4,5].

There have been recent works utilizing machine-learning-based methods to bet-
ter understand how various large-scale behavior emerges in complex systems, which
is often mathematically intractable without special symmetries [6,7]. In this work, we
propose to utilize an interpretable unsupervised feature extraction method of nonnega-
tive CP tensor decomposition (NCPD) [8] to extract key spatiotemporal patterns of
emergence at subgraph level. That is, we seek to learn a few snapshots of dynamics on
certain subgraph patterns and their temporal evolution by using NCPD. Tensor decom-
position techniques have been widely used in various applications including learning
spatiotemporal transcriptomics of human brain [9], tomography [10], data completion,
and text mining [11], but never for learning spatiotemporal patterns in complex systems.

We study the firefly cellular automata (FCA) [12] of discrete pulse-coupled oscilla-
tors and Hegselmann-Krause (HK) [13] model for opinion dynamics on synthetic net-
works generated by the Newman-Watts-Strogatz (NWS) [14] model and the Barabási–
Albert (BA) networks [15]. The code for the simulations and results in this work is
provided in https://github.com/agamgoy-research/NCPD-Dynamics.

2 Method and Results
Tensor encoding of complex systems. In order to make use of nonnegative CP de-
composition on tensor data, we first encode our network-dynamic data as a color-coded
adjacency tensor (CCAT) as follows.

Suppose we are given a pair of graph G = (V,E) and observed dynamics (Xt)0≤t<T ,
which are assumed to have evolved according to some coupled oscillator model or opin-
ion dynamics model, where Xt :V →Z/κZ. We can then represent the pair (G,(Xt)0≤t<T )
of input data by a tensor X of shape k× k×T , where each slice X[:, :, t] represents the
dynamics configuration Xt imposed onto the graph topology G as follows

https://github.com/agamgoy-research/NCPD-Dynamics


Fig. 1. Proposed Framework: (Panel a) Starting with N graph-dynamic pairs, we (Panel b)
encode each of them into CCAT representations, and (Panel c) concatenate them after flattening
into a singular tensor of shape N×T ×k2 and apply rank R NCPD on it to (Panel d) extract latent
interpretable features from the encoded dynamics tensor

X[i, j, t] := Ai j · min{Xt(i)−Xt( j) (mod κ), Xt( j)−Xt(i) (mod κ)} (1)
X[i, j, t] := Ai j · |Xt(i)−Xt( j)| · 1 (|Xt(i)−Xt( j)|< ε) (2)

where A = (Ai j) is the adjacency matrix of G, and the notation 1(·) represents the
indicator function. The color-coded adjacency tensor formulation (1) is used for coupled
oscillator dynamics data given its cyclic nature, and formulation (2) is used for opinion
dynamics data, where ε represents the opinion difference threshold with which nodes
are allowed to interact with and influence each other’s opinions [13]. These color-coded
adjacency tensors encompass abundant information including the network topology,
evolution of dynamics, as well as the influence of connected nodes on each other.

We generate a pool of N CCATs for synchronizing and non-synchronizing dynamics
observed on k-node subgraphs, sampled randomly [16] from a large parent graph (See
Fig. 1a and 1b). Next, we flatten out each of these tensors into T × k2 matrices to
preserve the information about the graph structure in the k× k adjacency matrices and
then concatenate all N such matrices to create a final data tensor Y of size N ×T × k2,
that encodes information about the dynamics.

Nonnegative CP Decomposition. We then apply rank R nonnegative CP decomposi-
tion on this (examples× time× graph) tensor Y as Y ≈ ∑

R
i=1

⊗3
k=1 U (k)[: i] (see

Fig. 1c), where U (1),U (2),U (3) are nonnegative loading matrices with R columns and
(N,T,k2)-rows respectively, and

⊗
represents the outer product. These loading matri-

ces represent the three sets of R−factors we learn, out of which the temporal factors
U (2)

i , and the graph-topology factors U (3)
i for i ∈ {1, · · · ,R} are the most important fac-

tors for our analysis. Note that the nonnegativity constraint in this decomposition is
crucial to learning an interpretable ‘parts-based’ representation of our input tensor [17].

The graph-topology factors can each then be reshaped back to get R matrices of size
k× k which are the ‘latent filters’ that encode the important topological features in the
underlying network which are crucial to the synchronization of the dynamics imposed
on it. Next, the temporal factors represent the trend of utilization of the corresponding
latent topological factors over time as the dynamics evolve (See Fig. 1d).



Results. We illustrate some interpretable features extracted from the (Panel A) FCA
coupled oscillator dynamics (κ = 5), and (Panel B) Hegselmann-Krause (HK) opinion
dynamics, on a 450−node NWS and BA networks respectively in Figure 2 using NCPD.
We use rank R = 4, subgraph size k = 20, batch size N = 2500, and duration T = 50.

Fig. 2. Rank-4 NCPD filters for (Panel A) FCA dynamics and (Panel B) HK opinion dynamics

We observe that the latent subgraph structures learned by NCPD are representa-
tive of the parent network characteristics. In Fig. 2A the filters show generally sparse
latent subgraphs some with cliques. This aligns with the properties of sparse NWS net-
works (e.g., small-world properties with high clustering coefficients). Next, in Fig. 2B
the filters show latent subgraphs that are denser than the ones in 2A, with nodes that
are connected to most other nodes (e.g., ‘hubs’). Such hubs are characteristics of BA
networks that arise due to the preferential attachment mechanism [15].

In Fig. 2A for the FCA dynamics, we observe that in the (1,2) filter, we see a path-
like pattern, and we observe that this pattern is ‘transient’ in the sense that its temporal
utilization vanishes. This aligns with the property of FCA to synchronize relatively
quickly on path-like structures for κ > 3 [12]. The other three filters seem to capture
how non-synchronizing dynamics occur at the subgraph level. There, interactions due
to large phase differences between nodes in the clique are persistent and are in fact
utilized more strongly as the system evolves.

Next, in Fig. 2B for the HK dynamics, we obtain transient patterns of usage in the
graph atoms, as the data tensors inherently encode network structures that represent
people with opinion differences within the ε−threshold and thus we expect the utiliza-
tion of such structures to die out eventually as these agents interact to converge towards
a consensus. For example, the first atom which represents a dense pattern with a long
path, and the second and third atoms where we observe a relatively sparser topology
with a loose-community structure present within, are used only in the initial few itera-
tions followed by an immediate drop in the usage. On the contrary, in the fourth atom
which contains a cycle with an extended path, we observe a longer-lasting trend of
utilization in the initial iterations, as seen from the prolonged activity in the color bar.

We also observe that these patterns can succinctly be captured by rank 4 decom-
position and increasing the rank further leads to repetitive patterns, which implies that
these subgraph-dynamic complex systems are perhaps inherently low-rank structures.

Conclusion. In summary, we show that our proposed NCPD-based framework has the
potential to capture interpretable features from these large-scale complex systems that



enhance our understanding of the emergent behavior and latent properties of various
dynamical systems on these networks. We aim to extend our work by (1) Expanding
to a wider range of dynamical systems and sizes and kinds of underlying networks,
and (2) Approach this problem from a supervised perspective that would preserve the
interpretability and also allow us to make predictions about the emergent properties.
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